
Fall 2010/2011 

Symbolic Constants

Outline of the Lecture 
� Symbolic Constants 

o Equal-Sign Directive 
o Calculating the Sizes of Arra
o EQU Directive  
o TEXTEQU Directive 

� Real-Address Mode Programming

� A symbolic constant (or symbol definition
integer expression or some text. 
� Symbols cannot change at run time.
� Unlike a variable definition, a symbolic constant does no use any storage. 

Equal-Sign Directive 
name = expr

� name is called a symbolic constant 
� expression is a 32-bit integer (expression or constant) 
� Good programming style to use symbols

o Example 1 (Keyboard Definitions
Esc_key = 27 
mov al, Esc_key 

Rather than 
mov al,27 ; poor style

o Example 2 (Using the DUP Operator
The counter used by DUP should be a symbolic constant

Count = 5 
array DWORD C

� May be redefined. 
A symbol defined with _ can be redefined within the same program.

COUNT = 5  
mov al,COUNT ; AL = 5
COUNT = 10
mov al,COUNT ; AL = 10
COUNT = 100
mov al,COUNT ; AL = 100

Calculating the Size of a Byte Array
� Uses a constant named ListSize 

list BYTE 10,20,30,40
ListSize = 4
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Keyboard Definitions) 
Esc_key = 27  
mov al, Esc_key  ;good style 

mov al,27 ; poor style  
Using the DUP Operator) 

The counter used by DUP should be a symbolic constant 
Count = 5  
array DWORD C OUNT DUP(0) 

can be redefined within the same program. 
 

mov al,COUNT ; AL = 5  
COUNT = 10  
mov al,COUNT ; AL = 10  
COUNT = 100  
mov al,COUNT ; AL = 100  

Calculating the Size of a Byte Array. 
 to declare the size of list:  

list BYTE 10,20,30,40  
ListSize = 4  

Address Mode Programming 

) is created by associating an identifier (a symbol) with an 



� A better way to handle this situation would be to let the assembler automatically calculate ListSize 
� The $ operator (current location counter) returns the offset associated with the current program 

statement 
list BYTE 10,20,30,40 
ListSize = ($ - list) 

� ListSize must follow immediately after list. 
list BYTE 10,20,30,40 
var2 BYTE 20 DUP(?) 
ListSize = ($ - list) ;incorrect 

Calculating the Size of a Word Array 
� current location counter: $  

o subtract address of list  
o difference is the number of bytes  
o divide by 2 (the size of a word)  

list WORD 1000h,2000h,3000h,4000h  
ListSize = ($ - list) / 2 

Calculating the Size of a Doubleword Array 
� current location counter: $  

o subtract address of list  
o difference is the number of bytes  
o divide by 4 (the size of a doubleword)  

list DWORD 1,2,3,4  
ListSize = ($ - list) / 4 

Calculating the Size of a string 
� Rather than calculating the length of a string manually, let the assembler do it: 

myString BYTE "This is a long string, containing" 
    BYTE "any number of characters" 

myString_len = ($ − �myString) 
EQU Directive 
� The EQU directive associates a symbolic name with an integer expression or some arbitrary text. 
� There are three formats: 

name EQU expression 
name EQU symbol 
name EQU <text> 

o expression must be a valid integer expression 
o symbol is an existing symbol name, already defined with = or EQU. 
o text is any text may appear within the brackets <. . .> 

� EQU can be useful when defining a value that does not evaluate to an integer: 
PI EQU <3.1416> 

� associate a symbol with a character string 
pressKey EQU <"Press any key to continue...",0>  
.data  
prompt BYTE pressKey 

� associate a symbol with an expression 
matrix1 EQU 10 * 10 
matrix2 EQU <10 * 10> 
.data 
M1 WORD matrix1 
M2 WORD matrix2 

� Cannot be redefined 



TEXTEQU Directive 
� Define a symbol as either an integer or text expression Called a text macro 
� There are three different formats 

name TEXTEQU <text> 
name TEXTEQU textmacro 
name TEXTEQU %constExpr 

� Example 1 
continueMsg TEXTEQU <"Do you wish to continue (Y/N) ?"> 
.data 
prompt1 BYTE continueMsg 

� Example 2 
continueMsg TEXTEQU <"Do you wish to continue (Y/N) ?">  
rowSize = 5  
.data  
prompt1 BYTE continueMsg  
count TEXTEQU %(rowSize * 2) ; 
move TEXTEQU <mov>  
setupAL TEXTEQU <move al,count>  
.code  
setupAL  ; generates: "mov al,10"  

� TEXTEQU  Can be redefined. 
The following program illustrates the definition of symbolic constants: 

TITLE Symbolic Constants (File: Constants.asm) 
; Demonstration of EQU and = directives 
.686 
.MODEL flat, stdcall 
.STACK 
INCLUDE Irvine32.inc 
.data 
Rows EQU 3 
Cols EQU 3 
Elements EQU Rows * Cols 
CR EQU 10 
LF EQU 13 
PromptText EQU <"Press any key to continue 
...",CR,LF,0> 
matrix WORD Elements DUP(0) 
prompt BYTE PromptText 
COUNT = 10h 
COUNT = 100h 
COUNT = 1000h 
COUNT = SIZEOF matrix 
.code 
main PROC 
exit 
main ENDP 
END main 

 
 
 



 
Real-Address Mode Programming 

Generate 16-bit MS-DOS Programs  
� Advantages  

o enables calling of MS-DOS and BIOS functions  
o no memory access restrictions  

� Disadvantages  
o must be aware of both segments and offsets  
o cannot call Win32 functions (Windows 95 onward)  
o limited to 640K program memory  

� Requirements  
o INCLUDE Irvine16.inc  
o Two additional instructions are inserted at the beginning of the startup procedure (main ) 

Initialize DS to the data segment using predefined MASM constant @data::  
mov ax,@data  
mov ds,ax  

Add and Subtract, 16-Bit Version 
TITLE Add and Subtract, Version 2      (AddSub2.asm )  
INCLUDE Irvine16.inc  
.data  
val1 DWORD 10000h  
val2 DWORD 40000h  
val3 DWORD 20000h  
finalVal DWORD ?  
.code  
main PROC  
mov ax,@data ; initialize DS  
mov ds,ax  
mov eax,val1 ; get first value  
add eax,val2 ; add second value  
sub eax,val3 ; subtract third value  
mov finalVal,eax ; store the result  
call DumpRegs ; display registers  
exit  
main ENDP  
END main  

 
Programming Exercise 1 
The following exercise can be done in protected mode or real-address mode. 
Subtracting Three Integers 
Using the AddSub.asm program as a reference, write a program that subtracts three integers using only 
16-bit registers. Insert a call DumpRegs statement to display the register values. 

 


