
Fall 2010/2011

Symbolic Constants

Outline of the Lecture
� Symbolic Constants

o Equal-Sign Directive
o Calculating the Sizes of Arra
o EQU Directive
o TEXTEQU Directive

� Real-Address Mode Programming

� A symbolic constant (or symbol definition
integer expression or some text.
� Symbols cannot change at run time.
� Unlike a variable definition, a symbolic constant does no use any storage.

Equal-Sign Directive
name = expr

� name is called a symbolic constant
� expression is a 32-bit integer (expression or constant)
� Good programming style to use symbols

o Example 1 (Keyboard Definitions
Esc_key = 27
mov al, Esc_key

Rather than
mov al,27 ; poor style

o Example 2 (Using the DUP Operator
The counter used by DUP should be a symbolic constant

Count = 5
array DWORD C

� May be redefined.
A symbol defined with _ can be redefined within the same program.

COUNT = 5
mov al,COUNT ; AL = 5
COUNT = 10
mov al,COUNT ; AL = 10
COUNT = 100
mov al,COUNT ; AL = 100

Calculating the Size of a Byte Array
� Uses a constant named ListSize

list BYTE 10,20,30,40
ListSize = 4

Microprocessors (0630371)
Fall 2010/2011 – Lecture Notes # 8

Symbolic Constants and Real-Address Mode Programming

Sign Directive
the Sizes of Arrays and Strings.

TEXTEQU Directive
Address Mode Programming

Symbolic Constants
symbol definition) is created by associating an identifier (a symbol) with an

cannot change at run time.

Unlike a variable definition, a symbolic constant does no use any storage.

expr ession
is called a symbolic constant

bit integer (expression or constant)
ood programming style to use symbols.

Keyboard Definitions)
Esc_key = 27
mov al, Esc_key ;good style

mov al,27 ; poor style
Using the DUP Operator)

The counter used by DUP should be a symbolic constant
Count = 5
array DWORD C OUNT DUP(0)

can be redefined within the same program.

mov al,COUNT ; AL = 5
COUNT = 10
mov al,COUNT ; AL = 10
COUNT = 100
mov al,COUNT ; AL = 100

Calculating the Size of a Byte Array.
 to declare the size of list:

list BYTE 10,20,30,40
ListSize = 4

Address Mode Programming

) is created by associating an identifier (a symbol) with an

� A better way to handle this situation would be to let the assembler automatically calculate ListSize
� The $ operator (current location counter) returns the offset associated with the current program

statement
list BYTE 10,20,30,40
ListSize = ($ - list)

� ListSize must follow immediately after list.
list BYTE 10,20,30,40
var2 BYTE 20 DUP(?)
ListSize = ($ - list) ;incorrect

Calculating the Size of a Word Array
� current location counter: $

o subtract address of list
o difference is the number of bytes
o divide by 2 (the size of a word)

list WORD 1000h,2000h,3000h,4000h
ListSize = ($ - list) / 2

Calculating the Size of a Doubleword Array
� current location counter: $

o subtract address of list
o difference is the number of bytes
o divide by 4 (the size of a doubleword)

list DWORD 1,2,3,4
ListSize = ($ - list) / 4

Calculating the Size of a string
� Rather than calculating the length of a string manually, let the assembler do it:

myString BYTE "This is a long string, containing"
 BYTE "any number of characters"

myString_len = ($ − �myString)
EQU Directive
� The EQU directive associates a symbolic name with an integer expression or some arbitrary text.
� There are three formats:

name EQU expression
name EQU symbol
name EQU <text>

o expression must be a valid integer expression
o symbol is an existing symbol name, already defined with = or EQU.
o text is any text may appear within the brackets <. . .>

� EQU can be useful when defining a value that does not evaluate to an integer:
PI EQU <3.1416>

� associate a symbol with a character string
pressKey EQU <"Press any key to continue...",0>
.data
prompt BYTE pressKey

� associate a symbol with an expression
matrix1 EQU 10 * 10
matrix2 EQU <10 * 10>
.data
M1 WORD matrix1
M2 WORD matrix2

� Cannot be redefined

TEXTEQU Directive
� Define a symbol as either an integer or text expression Called a text macro
� There are three different formats

name TEXTEQU <text>
name TEXTEQU textmacro
name TEXTEQU %constExpr

� Example 1
continueMsg TEXTEQU <"Do you wish to continue (Y/N) ?">
.data
prompt1 BYTE continueMsg

� Example 2
continueMsg TEXTEQU <"Do you wish to continue (Y/N) ?">
rowSize = 5
.data
prompt1 BYTE continueMsg
count TEXTEQU %(rowSize * 2) ;
move TEXTEQU <mov>
setupAL TEXTEQU <move al,count>
.code
setupAL ; generates: "mov al,10"

� TEXTEQU Can be redefined.
The following program illustrates the definition of symbolic constants:

TITLE Symbolic Constants (File: Constants.asm)
; Demonstration of EQU and = directives
.686
.MODEL flat, stdcall
.STACK
INCLUDE Irvine32.inc
.data
Rows EQU 3
Cols EQU 3
Elements EQU Rows * Cols
CR EQU 10
LF EQU 13
PromptText EQU <"Press any key to continue
...",CR,LF,0>
matrix WORD Elements DUP(0)
prompt BYTE PromptText
COUNT = 10h
COUNT = 100h
COUNT = 1000h
COUNT = SIZEOF matrix
.code
main PROC
exit
main ENDP
END main

Real-Address Mode Programming

Generate 16-bit MS-DOS Programs
� Advantages

o enables calling of MS-DOS and BIOS functions
o no memory access restrictions

� Disadvantages
o must be aware of both segments and offsets
o cannot call Win32 functions (Windows 95 onward)
o limited to 640K program memory

� Requirements
o INCLUDE Irvine16.inc
o Two additional instructions are inserted at the beginning of the startup procedure (main)

Initialize DS to the data segment using predefined MASM constant @data::
mov ax,@data
mov ds,ax

Add and Subtract, 16-Bit Version
TITLE Add and Subtract, Version 2 (AddSub2.asm)
INCLUDE Irvine16.inc
.data
val1 DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h
finalVal DWORD ?
.code
main PROC
mov ax,@data ; initialize DS
mov ds,ax
mov eax,val1 ; get first value
add eax,val2 ; add second value
sub eax,val3 ; subtract third value
mov finalVal,eax ; store the result
call DumpRegs ; display registers
exit
main ENDP
END main

Programming Exercise 1
The following exercise can be done in protected mode or real-address mode.
Subtracting Three Integers
Using the AddSub.asm program as a reference, write a program that subtracts three integers using only
16-bit registers. Insert a call DumpRegs statement to display the register values.

